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Backwards and forwards relative dispersion in turbulent flow: An experimental investigation
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From particle tracking velocimetry we present an experimental measure of the ratio between backwards and
forwards relative dispersion in an intermediate Reynolds number turbulent flow. Lack of time-reversal sym-
metry implies that their ratio may be different from 1. From a stochastic model, this has recently been studied
by Sawford et al. [Phys. Fluids 17, 095109 (2005)] giving ratios between 5 and 20. We find a value of
approximately 2 and discuss it in the context of the characteristics of the rate of strain tensor s;;. An analysis
of a direct numerical simulation by Biferale er al. [Phys. Rev. Lett. 93, 064502 (2004) and Phys. Fluids 17,

021701 (2004)] gives the same result.
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I. INTRODUCTION

Turbulence is the state of fluid flow far from its equilib-
rium laminar state. It is governed by the Navier-Stokes equa-
tion and is highly nonlinear. Although there have been many
attempts, Kolmogorov’s four-fifths law [1] is still the only
result derived rigorously from the Navier-Stokes equation.
An important aspect of turbulence is its ability to efficiently
transport and mix matter, heat, and momentum. Relative dis-
persion describes the separation in time of nearby fluid par-
ticles. Transport and mixing properties in turbulent flow are
therefore associated with this phenomenon.

Richardson [2] was the first to analyze relative dispersion.
He linked the problem to a diffusion equation and empiri-
cally derived a scale-dependent eddy diffusivity of a cloud of
fluid elements. Obukhov [3] later refined the theory relating
the mean-square separation of an initially close pair of fluid
elements to the kinetic energy dissipation & of the flow,

(r’)=ger. (1)

The Richardson law expressed in Eq. (1) is supposed to be
valid in the inertial range where influences from the large-
scale forcing and small-scale viscous effects can be ne-
glected. The Richardson-Obukhov constant g seems to be a
function of Reynolds number Re, presumably with an
asymptotic limit at high Reynolds number [4].

The Lagrangian nature of turbulent pair separation makes
computational and experimental tests very difficult since a
large separation of temporal scales is needed. Yeung [5] con-
cluded based on extrapolations from low Re, direct numeri-
cal simulation (DNS) data that at least Re, ~600-700 is
needed. Previous studies at moderate Re, [6-9] have, how-
ever, succeeded in providing insight into the Richardson law,
although a definitive scaling has hardly been observed.

A striking feature of hydrodynamical turbulence com-
pared to a Gaussian flow is the existence of nonzero odd
moments of the distributions of velocity differences: the
structure functions. The four-fifths law is the most well
known example of this. It implies that time reversibility
breaks down in the inertial range.
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A consequence is that if you follow the separation of two
fluid elements forward in time, then follow the same two
particles backward in time, the latter separation will occur at
a different speed. In mixing applications this could play a
significant role.

Calculating the future width of a puff released at time ¢
=0 is a classical forwards dispersion problem. If, on the
other hand, one wants to calculate the fluctuations in some
scalar concentration at some time #, one will have to follow
the particles backwards in time: the different trajectories
carry different scalar concentrations from the past.

This forward/backward asymmetry was, however, only re-
cently emphasized by Sawford ef al. [10]. They noticed that
both processes can be described with the Richardson law
with different values of the constant g. They investigated two
different Lagrangian stochastic models for relative dispersion
in the inertial range and concluded that the process of back-
wards dispersion was much faster than the corresponding
forward case. This has implications for practical calculations
of turbulent mixing, such as, for example, combustion and
pollution.

On an experimental level, no evidence of the asymmetry
has been reported. In this paper, we will present an analysis
of an intermediate Reynolds number flow. Sawford et al.
[10] noticed the high computational costs for studying DNS
data. We have, however, come up with an easy fo do scheme
that avoid this computational problem. DNS data will there-
fore be analyzed and compared with our experimental find-
ings.

Determining the ratio between the backwards and for-
wards dispersion defined as g,/gs where g, and g, refer to
the Richardson-Obukhov constants for the backward and for-
ward case, respectively, is the objective of the present paper.

Sections II and III will go through the technique of par-
ticle tracking velocimetry and characterize the experimental
flow. In Sec. IV, we will present the results after a short
discussion of how to obtain dispersion results in a finite Rey-
nolds number flow. The section will end with a short presen-
tation of DNS data analyzed in the same way as the experi-
mental data. In the Discussion section, we will present some
heuristic arguments relating the difference between forwards
and backwards relative dispersion to the mechanism of in-
finitesimal material line stretching taking place in the viscous
range. Section VI will conclude with our findings.
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FIG. 1. Experimental setup.

II. EXPERIMENTAL METHOD

We have performed a particle tracking velocimetry (PTV)
experiment in an intermediate Reynolds number turbulent
flow. Lagrangian trajectories of fluid elements in water are
obtained by tracking neutrally buoyant particles in space and
time. The flow is generated by eight rotating propellers
(which change their rotational direction in fixed intervals)
placed in the corners of a tank with dimensions 32X 32
X 50 cm? (see Fig. 1).

The data acquisition system consists of four commercial
CCD cameras with a maximum frame rate of 50 Hz at
1000 X 1000 pixels. Two different setups are used. The first
covers a measuring volume of roughly (12 cm)®. Here we
use polystyrene particles with size ~400 wm and density
very close to 1. We follow O(1000) particles at each time
step with a position accuracy of 0.05 pixels corresponding to
less than 10 wm. Due to the large particle size and separa-
tion, we cannot study viscous effects in this setup. We there-
fore also use micro tracking where the volume is only
(1 cm)? in order for the viscous scales to be resolved. In this
setup, we use cenosphere particles with size ~100 wm.

In both setups, the Stokes number, 7,/ 7, (7; denotes the
inertial relaxation time for the particle to the flow while 7, is
the Kolmogorov time), is much less than 1 and the particles
can therefore be treated as passive tracers in the flow. The
particles are illuminated by a 250 W stroboscope.

The large volume (macro tracking settings) is used for the
main results presented in Sec. IV while the small volume
(micro tracking settings) is used only for the heuristic argu-
ments presented in the Discussion section.

The mathematical algorithms for translating two-
dimensional (2D) image coordinates from the four camera
chips into a full set of three-dimensional (3D) trajectories in
time involve several crucial steps: fitting Gaussian profiles to
the 2D images, stereo matching (line of sight crossings) with
a two-media (water-air) optical model, and construction of
3D trajectories in time by using the kinematic principle of
minimum change in acceleration [11,12].

III. FLOW PROPERTIES

We study a particular flow at intermediate Reynolds num-
ber in the large volume (macro tracking settings). Figure 2
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FIG. 2. (a) Standard deviations of the velocity components av-
eraged over the yz plane and the xz plane. The dotted lines corre-
spond to the radial components while the dashed lines correspond to
the axisymmetric vertical component. (b) Same as in (a) but aver-
aged over the xy plane.

shows the standard deviations of the three velocity compo-
nents: the two horizontal (radial) 0,0, and the vertical
(axisymmetric) o, . The figure shows the standard deviations
averaged over three different planes: yz plane, xz plane [both
in panel (a)], and xy plane [in panel (b)]. In both panels the
two horizontal components are observed to collapse on val-
ues around 22 mm/s with almost no dependence on the ver-
tical or the horizontal positions. The vertical component has
a dependence on the vertical coordinate z with a minimum
0, =15.1 mm/s at z=18 mm indicating the symmetry plane
of the flow.

The turbulence characteristics are given in Table 1. The
values have been obtained by fitting a von Karméan model to
the experimental obtained longitudinal second-order struc-
ture function f(r)E(évﬁ(r)} [6]. The model fit is shown in
Fig. 3(a). The method determines & with a 10% error. In
computing f(r) from data, the averages were taken over all
separations r with |r|=r within a ball fully inside the mea-
suring volume.

We have measured the normal component of the longitu-
dinal mean acceleration

TABLE 1. Macro tracking turbulence characteristics obtained
from fits to the von Kdrmdn model. ¢ is the mean kinetic energy
dissipation; 7= (*/¢)""* is the Kolmogorov length scale with the
kinematic viscosity v of water. 7,=(v/¢)"? is the Kolmogorov
time scale. The integral length scale is L;,, while 7} is the integral
time scale. oﬁ:%(o’ﬁﬁ 0'5‘_+ o’i) is the standard deviation of veloc-

ity. The Reynolds number is defined as Re)\zkj" with the Taylor

micro scale A= \,(%)_

7 Lint 7 Ty € Ty Re)\

n

025 mm 48 mm 0.07s 245s 168 mm?/s> 23.33 mm/s 172
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FIG. 3. (a) f(r) with the fitted von Kdrmdn model on top (full
line). (b) (&zH(r)) with a linear fit.

(8a)(r) = <aa<r) : 5> 2)

between two points separated a distance r. In a globally ho-
mogeneous flow, this quantity is zero for all values of r and
the second-order structure of the turbulence can be solely
described by a single function, namely f(r) [6]. Most real
flows are, however, not globally homogeneous and therefore
a net mean acceleration may exist. (da(r)) is plotted in Fig.
3(b). The acceleration is observed to increase linearly. The
solid straight line is a linear fit of the form y(r)=ar+ 8. Here
a=0.13 mm/s and B is very close to zero. From the axisym-
metric properties of the flow we expect the mean accelera-
tion to be of the form &u?/r so that

ar=<5aH(r)>=u2 = (3)
¢= ;—i =0.057 s7!, (4)

where ¢ is the frequency. Because ae> 0, the flow is strain-
ing (in contrast to a full body rotation with da<<0). Taking
the reciprocal of ¢ gives us a characteristic time scale for the
straining motion of the order 18 s. This number is much
larger than the integral time scale 7, therefore we do not
expect any significant influence of the mean flow on the
results presented later.

IV. RESULTS

Recently, Bourgoin et al. [13] performed a PTV experi-
ment at Re, ~800. Besides being the PTV experiment with
the largest Re, so far, it is the first study to shed light on the
small time expansion and acknowledge its great importance
on relative separation of particles in turbulent flow.

They find a very robust ballistic regime (the mean-square
separation is proportional to #?) for times smaller than the
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Batchelor time 7y=(r3/¢)". This is the time for which par-
ticle pairs are strongly influenced by their initial separation
ro and can fully be described by the second-order Eulerian
structure function. The Richardson law is only valid for
times much larger than #;, and should therefore be indepen-
dent of initial separations, as long as they are small but still
larger than the Kolmogorov scale. It is therefore an
asymptotic relation that is approached at infinite Re,.
At finite Re, we have a relation of the general form

(rP)Irk = F(tlty, pirg,Rey), (5)

where we have chosen r and ¢, as scales to make the relation
dimensionless. For a given Re, the inertial range is found
where t/ty< T;/ty%(n/ry)**Re, and 7/r,=0. In the iner-
tial range, therefore, we have

(P)Irg = F(ilty,0,Re,). (6)

We can now, without loss of generality, express F in terms of
the two functions ® and 0O,

F(t/ty,0,Rey) = D(t/ty,Re,)[t/t, — O(Rey) ] . (7)

If there is an asymptotic law for Re, — oo, then ®(Re,) must
approach a constant value and ®(¢/1,,R,) must approach a
function ®(t/1y,%) in that limit. Substituting fo=r3 "3

and letting Re\, — %, we can rewrite the relation as
<r2> — q)(t81/3r62/3, 0 )s[t _ r(2)/38_1/3®(°°)]3. (8)

If we let ry— 0, then we arrive at the Richardson law pro-
vided that ®(x, ) approaches a constant value P(c, o)
=g as x— %, where g is the Richardson-Obukhov constant.
This means, on the other hand, that keeping r, finite but
letting t— o leads to the relation

() = ®(, e[t - r ™ 2O (). )

Denoting O(Re,) T, we finally arrive at the finite Rey-
nolds number expression as introduced by Ott and Mann [6],

(P () = gty — Tolt). (10)

When ry is in the inertial range, the only available time scale
is 1y so that T,=st,, where s is independent of ry. The time
shift 7}, is thus a result of processes taking place in the initial
phase. When these processes have ceased, and the dispersion
has lost its memory of them, the time shift is the only thing
that remains—it cannot be removed by any mechanism.

The mixing of viscous and long-range effects in finite
Reynolds number turbulence motivated Biferale et al. [9] to
study exit times. The method is very promising, although it is
not possible to determine the Richardson-Obukhov constant
without a model for relative separation.

A. PTV

We do not expect to find any significant Richardson-
Obukhov scaling. The finiteness of the Reynolds number and
of the observational domain are to be held responsible for
this. For the latter part: the main effect would be a bias
toward lower exponents of #: rapidly separating particles may
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FIG. 4. (a) <r2(t)>/ré as a function of ¢/, in the forward case.
The different dotted lines correspond to different initial separations
ro from 4—-87 to 24-287. A fit to data by Eq. (10) is plotted as the
gray solid line. The dashed line is the backward case fit. (b) Back-
ward case.

leave the volume making (r%(f)) smaller than it would have
been in an infinite volume. We have tried to reduce this effect
by using an observational volume several times the size of
the integral length scale as well as only used pairs that start
within a small subvolume (r=30 mm) of the full observa-
tional domain.

We look at particles that start within bins of size 47 cor-
responding to one millimeter. The largest bin is 24-287%
while the smallest is 4—8#. In order to make the selection of
pairs independent from the previous time step, we define a
new pair each time two arbitrarily chosen particles come
within the bin size of the initial separation ry. In this way, the
same two particles can contribute to the ensemble many
times.

Figure 4 shows (r%(1))/ r% as a function of ¢/, in the back-
ward and forward case. All bins are included in the two plots.
A fit to the data by Eq. (10) is also shown. From around ¢
~0.2t, the fits agree with data. One curve is, however, ob-
served to fall below the other curves. This is the smallest bin
that is not expected to be in the inertial range. For times
smaller than #~0.2¢,, the separation is not in the inertial
range and Eq. (10) is therefore not valid. For large times, all
the curves are observed to drop down. It happens earlier for
curves corresponding to larger bins. This is due to the narrow
inertial range as well as finite volume effects, as discussed
earlier.

From fits to Eq. (10) we obtain g values of g,
=0.55+0.05 and g,=1.15+£0.05 for the forward and back-
ward case, respectively. The error is the rms value for the
different . No systematic dependence was found.

The forward value g/ is similar to values obtained from
both DNS and experiments [6-9] at different Reynolds num-
bers. Franzese and Cassiani [4] derive gr as a function of
Reynolds number which saturates slightly above 0.6 for
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FIG. 5. ((r?3)y=rg)1(r57t/1y) vs t/1,. The different curves cor-
respond to the different bins.

Re, ~350. Between Re, ~ 150 and higher, the function is
only very weakly dependent on Re,.

The ratio g,/g; is 2.09, making it significantly smaller
than the ratios found by Sawford et al. [10]. Depending on
parameter choices in their stochastic models, they predict
8»/ 8y~ 5-20. The fact that our inertial range is narrow and
that the stochastic models are based on K41 inertial range,
scaling arguments might explain some of the discrepancy.

The time shift 7, in Eq. (10) is T)=(1.12+0.02)z, and
T5=(0.80+0.02)7,. As expected, it is the same order of mag-
nitude as f,. Another way of arriving at the result just pre-
sented would be to follow the original lines by Ott and Mann
[6], where T, is obtained as the zero crossing of (r2(¢))!/3
with the time axis.

The excellent fit for both backwards and forwards disper-
sion presented in Fig. 4 supports the existence of the inertial
range universal function F defined in Eq. (6). In our experi-
ment, F is valid over a decade of #/7,. We do not claim that
we have observed true Richardson scaling. This would mean
that all curves representing different bins would collapse on
a single straight line in a log-log coordinate system of r
versus ¢ with slope 3 (not shown). A very large Reynolds
number together with a large observational volume many
times the integral scale would be necessary to observe such a
regime. The clear difference between the forward and back-
ward case that we observe is, on the other hand, a clear
indication that the dynamics is much more complex than
purely ballistic motion where forward and backward disper-
sion are the same.

Bourgoin et al. [13] suggested that the inequality T, /1,
>10 should be fulfilled in order to observe any Richardson-
like behavior. They arrive at this inequality by plotting the
quantity ((r*3)—rg?)/(r3"t/ty) versus t/t, and looking for
plateaus. Only for the smallest initial separation for which
T, /ty is of order 10 do they observe a transition to a plateau.
For comparison (Fig. 4 in their paper) we have plotted the
same quantity for the forward dispersion case in our experi-
ment. Figure 5 show the curves for the different bins. Except
for the two smallest bins, plateaus are observed at ¢~ ¢, for
all bins. Important in this context is that 7;/t,<<10 for all
bins in our experiment.

A few differences in the two experiments might explain
the difference in 7 /¢, and the transition to a Richardson-like
behavior observed in Fig. 5: ry/  and L, /L;,, where L, is
the diameter of the observation volume. In the experiment by
Bourgoin et al., L,,/Liy,~1 and ry/ ne{43;2150}. In our
experiment, L /Li,,~2.5 and ry/ pe{4;28}. Lyo/Liy is a
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FIG. 6. (a) Distance-neighbor function for forward dispersion
for pairs starting at 8—127, (b) backward case. In both plots, the
straight line is the prediction by Richardson.

measure of possible finite volume bias whereas the implica-
tions of r,/ i are more subtle. Bourgoin et al. explore a wide
range of initial separations where at least the smallest ones
lie fully and unambiguously in the inertial range. Our Rey-
nolds number is significantly lower and it is therefore not
possible for us to explore the same range of initial separa-
tions in the inertial range. Because our ratios of ry/n are
smaller, we can follow particle pairs for longer times—both
physical time as well as in time rescaled with z,. An objec-
tion toward our relative low ratio of ry/ 7 would be that none
of the separations lie fully in the inertial range. However, we
defined the inertial range universal function JF based on the
argument that 7/ry~0. So for the validity of F, the ratio
ro/ m is not too low.

To quantify how far away we are from a fully developed
Richardson regime, we will now look at the probability den-
sity function (pdf) of separation: the Richardson distance-
neighbor function ¢(r) is the solution to a diffusion equation
with scale-dependent diffusivity K(r) ~r*3 [6].

The data are plotted in Fig. 6 for initial separations be-
tween 127 and 16%. The Richardson prediction is shown as a
straight line. In both case, excellent agreement is observed.

If, however, we look at the moments of the pdf, we ob-
serve that the Richardson prediction may not be the best
description for the experimental data: the ratio between the
first two moments of the pdf’s is displayed in Fig. 7. Besides
the smallest initial separations (ro=47 and 87, which are
probably not even in the inertial range), the curves almost
collapse. The scatter observed for long times is due to poor
statistics and should not be subject to any physical interpre-
tation. Although the backward case seems to be closer to the
Richardson value (the bottom most horizontal line), both
cases are certainly not Gaussian (topmost horizontal line).

B. DNS

In addition to the experimental findings, we have per-
formed a similar analysis on direct numerical simulation data
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FIG. 7. (a) {r(£))*/{r*(t)) as a function of t/t, for the forward
case. The different lines correspond to different initial separations:
1o increasing upward from ry=4% to ry=287% in bins of 47. The
horizontal lines are the Richardson prediction at 0.67 and the
Gaussian prediction at 0.85. (b) Backward case.

(DNS). Details about the simulation can be found in Biferale
et al. [14,15].

We have again sorted r, in bins of size 4 7. This approach
is somewhat different from the usual DNS approach, where
ro 18 a finite number and not, as here, an interval. Doing it
our way we can, however, get information on the backwards
dispersion from databases of only tracks, without having to
store the full Eulerian velocity field in time [10]. The DNS
simulates the three-dimensional Navier-Stokes equations at a
resolution of 1024 corresponding to Rey ~280. In nondi-
mensional units, £e=0.81, v=8.8X 1074, n=5X 1073, and L
=3.14 with Lagrangian velocity autocorrelation time and
Kolmogorov time, 7, =1.2 and 7=3.3 X 1072, respectively.

We plot (rz(t))/rg as a function of ¢/t in Fig. 8 for both
forwards and backwards dispersion for the case r,=207. The
dashed lines are fits to Eq. (10). After a time 7~ ¢, the fits are
in excellent agreement with the data. Figure 9 reveals a small
dependence of g, g,, and g,/g; on ry/ 7. g,/ g, decreases
from 2.4 to 2.2 with increasing ry/ 7. The fact that the small-
est initial separations are not in the inertial range may ex-
plain this behavior.

1000

100
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—_
<

0.1 1 10
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FIG. 8. <r2(t)>/r(2) as a function of /1, for the two cases with
ro=207. Fits by Eq. (10) are displayed on top by thin lines. The
upper curve is the backward case.
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It is noteworthy that g,/g,~2 as in the experiment, al-
though the general flow properties of the DNS and experi-
mental flow are different: whereas the experimental flow is
axisymmetric and slightly strained, the DNS is isotropic. In
DNS, the forcing on the smallest wave numbers in Fourier
space gives rise to a vanishing (&a(r)).

Along with these differences between the experiment and
the DNS, there are other physical differences of importance.
The first and probably most striking is the Lagrangian non-
stationarity [16]. In the experiment, a fluid particle will ex-
perience a decrease in kinetic energy with time as it moves
away from the forcing propellers. From time to time it will,
however, due to the finite volume, come back to the propel-
lers once again and gain kinetic energy. In agreement with
decaying turbulence, %<M2>=—8. In DNS, in contrast, we
have that (%(u2>=0.

Another difference is the number of integral time scales
observed. Whereas the DNS only has ~3.7T;, the experi-
ment has ~1547;. The volume size in terms of integral scale
is similar to our experiment (L,q/Li,=2).

The close agreement between g,/g,, in the experiment and
in the DNS data indicates that the result is robust and, per-
haps more importantly, that DNS can in a satisfactory way be
used to simulate turbulence in the absence of real physical
experiments.

V. DISCUSSION

The difference between forwards and backwards disper-
sion can be explained in part in terms of stretching of infini-
tesimal material line elements /. These obey the kinematic
relation

1 DI

. . 1(0u; du; .
with the rate of strain tensor, 5= 5(5+ 5‘) The eigenvalues

of s;;,A; are defined such that A, > A£> A3, and Z;A,;=0 due
to incompressibility. Batchelor [17] proposed that any infini-
tesimal material line element will, after a short time, align
itself2 with the largest eigenvalue and therefore %Dlz/Dt
=A .

From our experimental micro tracking, we can calculate
the distributions of A; in a flow with Re, ~100. An ansatz
for the linearity of the velocity field in the proximity of the
particle positions is used to obtain the eigenvalues, A;. De-
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FIG. 10. (a) PDF of A;. The PDFs are normalized with the rms
of total strain (s?)!/2. (b) Stretching rates as a function of time. From
bottom to top: var(L1)), var(L,(t)), (LAt)), and (L(t)).

tails of the method can be found in Liithi ef al. [18].
Figure 10(a) shows the distributions of A;. We find the
ratio

(AD):(AL):(AL) = 1.00:0.20:— 1.20.

Other experiments found similar values: Kholmyansky et al.
[19] in an atmospheric flow at Re, =10* and Liithi ez al. [18]
in a magnetically forced flow at Re, =50. Betchov [20] calls
it the jet collision situation: compression of material lines in
one direction and stretching in the other two directions. We
can associate this situation with forward infinitesimal sepa-
ration of fluid particles. In the backward case, we simply
change the sign of all three eigenvalues resulting in

(ADY:(AS):(AS) = = 1.00:= 0.20:1.20.

Recent studies [21-23] indicate that coarse-grained strain
dynamics are similar to their viscous counterpart. More im-
portantly, it seems that even the eigenvalues are very similar
to the ones found in coarse-grained fields by Borue and
Orszag [23]. The above picture may thus be extended to
scales, [> 7, and hence into the inertial range. In order to
connect the theory for infinitesimal material line stretching to
inertial range dispersion, we therefore assume self-similarity
of material line stretching.

Based on the above assumptions, we can estimate the ra-
tio, g,/ g;. The characteristic time of separation is determined
by the largest mean eigenvalue: (A ) and —(A3) for the for-
ward and backward case, respectively. In the forward case
where >0, we recall (r(t));=get’. Looking now at <0
with normalized time, we have

—(A —(Ay)
(rz(t))h=<r2<t<i—l>3>>>f=gf8<t <§\1;>) =get,

which means that
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_ 3
8/gr= (<<A/T;>> =1.75. (12)

This value is within the errors of the value found earlier,
even though the (A;) was obtained from the viscous range
and the relative dispersion experiment was performed in the
inertial range.

The picture is, however, more complicated. To illustrate
this, we compute the stretching rate L(z) defined as L(t)/ 7,
= %l‘lezl Dt from Eq. (11). For large times, we expect L(z)
to reach a steady state that can be associated with the
Lyapunov exponent defined as A=lim,_.{L(z)) [7,9]. The
computation of the two cases only differs by a sign change in
the time integration. (L(¢)) and the variance var(L(z)) for
both cases are shown in Fig. 10(b). Both the asymptotic A
and its variance are highest in the backward case. A\
=0.145 is similar to values found by others: 0.115+0.005 [9]
and 0.129-1.400 [24].

Comparing N\, and N, with the actual largest mean eigen-
value, (A ) in the forward case and —(A3) in the backward
case, we see that the values obtained are around 40% of the
eigenvalues. This is of course reflecting the known fact that
the material line elements are far from being perfectly
aligned with the largest eigenvalue as proposed by Batchelor
[24-26]. This is a first indication that the picture of calculat-
ing the ratio g,/ gy from (A ;) and (A;) alone is far too sim-
plistic. More severe, though, is the assumption of self-
similarity of material line stretching, which implies that
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particle separation vectors align with the coarse-grained prin-
cipal strain field. Future experimental investigations will fo-
cus on this last issue.

VI. CONCLUSION

A PTV experiment in a turbulent flow has been per-
formed. Because our Reynolds number is only of intermedi-
ate size, we do not observe a fully developed Richardson
regime. We therefore propose a function F of particle pair
separation that take into account the effect of initial separa-
tion. We show experimental evidence of the existence of this
function. It is hereafter utilized to quantify dispersion rates.

The experiment showed a difference between forwards
and backwards dispersion. The mean square separation fol-
lowing particle pairs backwards in time is twice as large as
forwards. DNS data support this finding, indicating that the
result is robust to forcing and Lagrangian stationarity.

Whereas Sawford et al. [10] focused on the role of the
odd moments to explain the difference between forwards and
backwards dispersion, we suggest alternatively that the posi-
tiveness of (A,) might explain the faster backwards disper-
sion as compared to the corresponding forwards dispersion.

ACKNOWLEDGMENTS

We thank the supercomputing center Cineca (Bologna,
Italy) for the hosting of the DNS data. This work was sup-
ported by the Danish Technical Research Council under Con-
tract No. 26-01-0087.

[1] U. Frisch, Turbulence (Cambridge University Press, Cam-
bridge, 1995).
[2] L. E. Richardson, Proc. R. Soc. London, Ser. A 110, 709
(1926).
[3] A. M. Obukhov, Izv. Akad. Nauk SSSR, Ser. Fiz. 5, 453
(1941).
[4] P. Franzese and M. Cassiani (unpublished).
[5] P. K. Yeung, Annu. Rev. Fluid Mech. 34, 115 (2002).
[6] S. Ott and J. Mann, J. Fluid Mech. 422, 207 (2000).
[7] G. Boffetta and I. M. Sokolov, Phys. Fluids 6, 094501 (2002).
[8] T. Ishihara and Y. Kaneda, Phys. Fluids 14, L69 (2002).
[9] L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte,
and F. Toschi, Phys. Fluids 17, 115101 (2005).
[10] B. L. Sawford, P. K. Yeung, and M. S. Borgas, Phys. Fluids
17, 095109 (2005).
[11] J. Willneff, Ph.D. thesis, ETH, Ziirich (2003).
[12] N. T. Ouellette, H. Xu, and E. Bodenschatz, Exp. Fluids 40,
301 (2006).
[13] M. Bourgoin, N. T. Ouellette, H. Xu, J. Berg, and E. Boden-
schatz, Science 311, 835 (2006).
[14] L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte,

and F. Toschi, Phys. Rev. Lett. 93, 064502 (2004).

[15] L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte,
and F. Toschi, Phys. Fluids 17, 021701 (2005).

[16] S. Ott and J. Mann, New J. Phys. 7, 142 (2005).

[17] G. K. Batchelor, Proc. R. Soc. London, Ser. A 213, 349
(1952).

[18] B. Liithi, A. Tsinober, and W. Kinzelbach, J. Fluid Mech. 528,
87 (2005).

[19] M. Kholmyansky, A. Tsinober, and S. Yorish, Phys. Fluids 13,
311 (2001).

[20] R. Betchov, J. Fluid Mech. 1, 497 (1956).

[21] B. Tao, J. Katz, and C. Meneveau, J. Fluid Mech. 457, 35
(2002).

[22] F. van der Bos, B. Tao, and J. K. C. Meneveau, Phys. Fluids
14, 2456 (2002).

[23] V. Borue and S. A. Orszag, J. Fluid Mech. 366, 1 (2002).

[24] S. S. Girimaji and S. B. Pope, J. Fluid Mech. 220, 427 (1990).

[25] A. Tsinober, An Informal Introduction to Turbulence (Kluwer,
Dordrecht, 2001).

[26] M. Guala, B. Liithi, A. Liberzon, A. Tsinober, and W. Kinzel-
bach, J. Fluid Mech. 533, 339 (2005).

016304-7



